LCOV - code coverage report
Current view: top level - modules/ml - encoder.cpp (source / functions) Hit Total Coverage
Test: lcov.info Lines: 0 386 0.0 %
Date: 2024-05-13 05:06:06 Functions: 0 31 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*************************************************************************
       2             :  *
       3             :  *  Project
       4             :  *                         _____ _____  __  __ _____
       5             :  *                        / ____|  __ \|  \/  |  __ \
       6             :  *  ___  _ __   ___ _ __ | |  __| |__) | \  / | |__) |
       7             :  * / _ \| '_ \ / _ \ '_ \| | |_ |  ___/| |\/| |  ___/
       8             :  *| (_) | |_) |  __/ | | | |__| | |    | |  | | |
       9             :  * \___/| .__/ \___|_| |_|\_____|_|    |_|  |_|_|
      10             :  *      | |
      11             :  *      |_|
      12             :  *
      13             :  * Copyright (C) Akiel Aries, <akiel@akiel.org>, et al.
      14             :  *
      15             :  * This software is licensed as described in the file LICENSE, which
      16             :  * you should have received as part of this distribution. The terms
      17             :  * among other details are referenced in the official documentation
      18             :  * seen here : https://akielaries.github.io/openGPMP/ along with
      19             :  * important files seen in this project.
      20             :  *
      21             :  * You may opt to use, copy, modify, merge, publish, distribute
      22             :  * and/or sell copies of the Software, and permit persons to whom
      23             :  * the Software is furnished to do so, under the terms of the
      24             :  * LICENSE file. As this is an Open Source effort, all implementations
      25             :  * must be of the same methodology.
      26             :  *
      27             :  *
      28             :  *
      29             :  * This software is distributed on an AS IS basis, WITHOUT
      30             :  * WARRANTY OF ANY KIND, either express or implied.
      31             :  *
      32             :  ************************************************************************/
      33             : #include <algorithm>
      34             : #include <ctime>
      35             : #include <fstream>
      36             : #include <iostream>
      37             : #include <openGPMP/ml/encoder.hpp>
      38             : #include <random>
      39             : #include <vector>
      40             : 
      41           0 : void gpmp::ml::AutoEncoder::save(const std::string &filename) const {
      42           0 :     std::ofstream file(filename, std::ios::out | std::ios::binary);
      43             : 
      44           0 :     if (file.is_open()) {
      45           0 :         file.write(reinterpret_cast<const char *>(&weights_input_hidden[0][0]),
      46           0 :                    weights_input_hidden.size() *
      47           0 :                        weights_input_hidden[0].size() * sizeof(double));
      48           0 :         file.write(reinterpret_cast<const char *>(&weights_hidden_output[0][0]),
      49           0 :                    weights_hidden_output.size() *
      50           0 :                        weights_hidden_output[0].size() * sizeof(double));
      51             : 
      52           0 :         file.close();
      53           0 :         std::cout << "Model saved successfully." << std::endl;
      54             :     } else {
      55           0 :         std::cerr << "Unable to open the file for saving." << std::endl;
      56             :     }
      57           0 : }
      58             : 
      59           0 : void gpmp::ml::AutoEncoder::load(const std::string &filename) {
      60           0 :     std::ifstream file(filename, std::ios::in | std::ios::binary);
      61             : 
      62           0 :     if (file.is_open()) {
      63           0 :         file.read(reinterpret_cast<char *>(&weights_input_hidden[0][0]),
      64           0 :                   weights_input_hidden.size() * weights_input_hidden[0].size() *
      65             :                       sizeof(double));
      66           0 :         file.read(reinterpret_cast<char *>(&weights_hidden_output[0][0]),
      67           0 :                   weights_hidden_output.size() *
      68           0 :                       weights_hidden_output[0].size() * sizeof(double));
      69             : 
      70           0 :         file.close();
      71           0 :         std::cout << "Model loaded successfully." << std::endl;
      72             :     } else {
      73           0 :         std::cerr << "Unable to open the file for loading." << std::endl;
      74             :     }
      75           0 : }
      76             : 
      77           0 : void gpmp::ml::AutoEncoder::lrate_set(double initial_rate) {
      78           0 :     learning_rate = initial_rate;
      79           0 : }
      80             : 
      81           0 : void gpmp::ml::AutoEncoder::lrate_update(int epoch) {
      82             :     // reduce the learning rate by half every N epochs
      83           0 :     const int decay_interval = 10;
      84           0 :     if (epoch % decay_interval == 0) {
      85           0 :         learning_rate /= 2.0;
      86           0 :         std::cout << "Learning rate updated to: " << learning_rate
      87           0 :                   << " at epoch " << epoch << std::endl;
      88             :     }
      89             :     // TODO?
      90           0 : }
      91             : 
      92           0 : gpmp::ml::AutoEncoder::AutoEncoder(int in_size,
      93             :                                    int h_size,
      94             :                                    int out_size,
      95           0 :                                    double l_rate)
      96           0 :     : input_size(in_size), hidden_size(h_size), output_size(out_size),
      97           0 :       learning_rate(l_rate) {
      98             : 
      99             :     // initialize weights randomly
     100           0 :     weights_input_hidden.resize(input_size, std::vector<double>(hidden_size));
     101           0 :     weights_hidden_output.resize(hidden_size, std::vector<double>(output_size));
     102             : 
     103           0 :     for (int i = 0; i < input_size; ++i) {
     104           0 :         for (int j = 0; j < hidden_size; ++j) {
     105             :             // random values between 0 and 1
     106           0 :             weights_input_hidden[i][j] = (rand() % 1000) / 1000.0;
     107             :         }
     108             :     }
     109           0 :     for (int i = 0; i < hidden_size; ++i) {
     110           0 :         for (int j = 0; j < output_size; ++j) {
     111           0 :             weights_hidden_output[i][j] = (rand() % 1000) / 1000.0;
     112             :         }
     113             :     }
     114           0 : }
     115             : 
     116             : std::vector<double>
     117           0 : gpmp::ml::AutoEncoder::sigmoid(const std::vector<double> &x) {
     118           0 :     std::vector<double> result;
     119           0 :     for (double val : x) {
     120           0 :         result.push_back(1.0 / (1.0 + exp(-val)));
     121             :     }
     122           0 :     return result;
     123           0 : }
     124             : 
     125             : std::vector<double>
     126           0 : gpmp::ml::AutoEncoder::forward(const std::vector<double> &input) {
     127             :     // forward passes
     128           0 :     std::vector<double> hidden(hidden_size);
     129           0 :     std::vector<double> output(output_size);
     130             : 
     131             :     // calculate hidden layer values
     132           0 :     for (int i = 0; i < hidden_size; ++i) {
     133           0 :         hidden[i] = 0;
     134           0 :         for (int j = 0; j < input_size; ++j) {
     135           0 :             hidden[i] += input[j] * weights_input_hidden[j][i];
     136             :         }
     137           0 :         hidden[i] = sigmoid({hidden[i]})[0];
     138             :     }
     139             : 
     140             :     // calculate output layer values
     141           0 :     for (int i = 0; i < output_size; ++i) {
     142           0 :         output[i] = 0;
     143           0 :         for (int j = 0; j < hidden_size; ++j) {
     144           0 :             output[i] += hidden[j] * weights_hidden_output[j][i];
     145             :         }
     146           0 :         output[i] = sigmoid({output[i]})[0];
     147             :     }
     148             : 
     149           0 :     return output;
     150           0 : }
     151             : 
     152           0 : void gpmp::ml::AutoEncoder::train(
     153             :     const std::vector<std::vector<double>> &training_data,
     154             :     int epochs) {
     155           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     156           0 :         for (const auto &input : training_data) {
     157             :             // forward pass
     158           0 :             std::vector<double> hidden(hidden_size);
     159           0 :             std::vector<double> output(output_size);
     160             : 
     161             :             // calculate hidden layer values
     162           0 :             for (int i = 0; i < hidden_size; ++i) {
     163           0 :                 hidden[i] = 0;
     164           0 :                 for (int j = 0; j < input_size; ++j) {
     165           0 :                     hidden[i] += input[j] * weights_input_hidden[j][i];
     166             :                 }
     167           0 :                 hidden[i] = sigmoid({hidden[i]})[0];
     168             :             }
     169             : 
     170             :             // calculate output layer values
     171           0 :             for (int i = 0; i < output_size; ++i) {
     172           0 :                 output[i] = 0;
     173           0 :                 for (int j = 0; j < hidden_size; ++j) {
     174           0 :                     output[i] += hidden[j] * weights_hidden_output[j][i];
     175             :                 }
     176           0 :                 output[i] = sigmoid({output[i]})[0];
     177             :             }
     178             : 
     179             :             // backward pass (gradient descent)
     180           0 :             for (int i = 0; i < output_size; ++i) {
     181           0 :                 for (int j = 0; j < hidden_size; ++j) {
     182           0 :                     weights_hidden_output[j][i] -=
     183           0 :                         learning_rate * (output[i] - input[i]) * hidden[j];
     184             :                 }
     185             :             }
     186             : 
     187           0 :             for (int i = 0; i < hidden_size; ++i) {
     188           0 :                 for (int j = 0; j < input_size; ++j) {
     189           0 :                     double error = 0;
     190           0 :                     for (int k = 0; k < output_size; ++k) {
     191           0 :                         error += (output[k] - input[k]) *
     192           0 :                                  weights_hidden_output[i][k];
     193             :                     }
     194           0 :                     weights_input_hidden[j][i] -= learning_rate * error *
     195           0 :                                                   input[j] * (1 - hidden[i]) *
     196           0 :                                                   hidden[i];
     197             :                 }
     198             :             }
     199           0 :         }
     200             :     }
     201           0 : }
     202             : 
     203           0 : void gpmp::ml::AutoEncoder::display() {
     204           0 :     std::cout << "Input to Hidden Weights:\n";
     205           0 :     for (int i = 0; i < input_size; ++i) {
     206           0 :         for (int j = 0; j < hidden_size; ++j) {
     207           0 :             std::cout << weights_input_hidden[i][j] << " ";
     208             :         }
     209           0 :         std::cout << "\n";
     210             :     }
     211             : 
     212           0 :     std::cout << "\nHidden to Output Weights:\n";
     213           0 :     for (int i = 0; i < hidden_size; ++i) {
     214           0 :         for (int j = 0; j < output_size; ++j) {
     215           0 :             std::cout << weights_hidden_output[i][j] << " ";
     216             :         }
     217           0 :         std::cout << "\n";
     218             :     }
     219           0 : }
     220             : 
     221           0 : gpmp::ml::SparseAutoEncoder::SparseAutoEncoder(int in_size,
     222             :                                                int h_size,
     223             :                                                int out_size,
     224             :                                                double l_rate,
     225             :                                                double s_weight,
     226           0 :                                                double s_target)
     227           0 :     : AutoEncoder(in_size, h_size, out_size, l_rate), sparsity_weight(s_weight),
     228           0 :       sparsity_target(s_target) {
     229           0 : }
     230             : 
     231           0 : void gpmp::ml::SparseAutoEncoder::train(
     232             :     const std::vector<std::vector<double>> &training_data,
     233             :     int epochs) {
     234             : 
     235           0 :     const double SPARSITY_TARGET_DECAY = 0.1;
     236             : 
     237           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     238           0 :         for (const auto &current_input : training_data) {
     239             :             // forward pass
     240           0 :             std::vector<double> hidden = forward(current_input);
     241             : 
     242             :             // backward pass (gradient descent)
     243           0 :             for (int i = 0; i < output_size; ++i) {
     244           0 :                 for (int j = 0; j < hidden_size; ++j) {
     245           0 :                     weights_hidden_output[j][i] -=
     246           0 :                         learning_rate * (hidden[i] - current_input[i]) *
     247           0 :                         hidden[j];
     248             :                 }
     249             :             }
     250             : 
     251           0 :             for (int i = 0; i < hidden_size; ++i) {
     252           0 :                 for (int j = 0; j < input_size; ++j) {
     253           0 :                     double error = 0;
     254           0 :                     for (int k = 0; k < output_size; ++k) {
     255           0 :                         error += (hidden[k] - current_input[k]) *
     256           0 :                                  weights_hidden_output[i][k];
     257             :                     }
     258             : 
     259             :                     double sparsity_term =
     260           0 :                         sparsity_weight * (sparsity_target - hidden[i]);
     261             : 
     262           0 :                     weights_input_hidden[j][i] -=
     263           0 :                         learning_rate * (error + sparsity_term) *
     264           0 :                         current_input[j] * (1 - hidden[i]) * hidden[i];
     265             :                 }
     266             :             }
     267             : 
     268           0 :             for (int i = 0; i < hidden_size; ++i) {
     269           0 :                 double average_activation = 0.0;
     270           0 :                 for (const auto &input : training_data) {
     271           0 :                     std::vector<double> current_hidden = forward(input);
     272           0 :                     average_activation += current_hidden[i];
     273           0 :                 }
     274           0 :                 average_activation /= training_data.size();
     275           0 :                 sparsity_target =
     276           0 :                     (1.0 - SPARSITY_TARGET_DECAY) * sparsity_target +
     277           0 :                     SPARSITY_TARGET_DECAY * average_activation;
     278             :             }
     279           0 :         }
     280             :     }
     281           0 : }
     282             : 
     283           0 : gpmp::ml::DenoisingAutoEncoder::DenoisingAutoEncoder(int in_size,
     284             :                                                      int h_size,
     285             :                                                      int out_size,
     286             :                                                      double l_rate,
     287           0 :                                                      double c_level)
     288             :     : AutoEncoder(in_size, h_size, out_size, l_rate),
     289           0 :       corruption_level(c_level) {
     290           0 : }
     291             : 
     292           0 : void gpmp::ml::DenoisingAutoEncoder::train(
     293             :     const std::vector<std::vector<double>> &training_data,
     294             :     int epochs) {
     295           0 :     std::srand(std::time(0));
     296             : 
     297           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     298           0 :         for (const auto &input : training_data) {
     299             :             // add noise to the input data
     300           0 :             std::vector<double> noisy_input = input;
     301           0 :             for (double &val : noisy_input) {
     302           0 :                 if ((std::rand() / (RAND_MAX + 1.0)) < corruption_level) {
     303             :                     // set to zero with probability corruption_level
     304           0 :                     val = 0.0;
     305             :                 }
     306             :             }
     307             : 
     308             :             // forward pass
     309           0 :             std::vector<double> hidden = forward(noisy_input);
     310             : 
     311             :             // backward pass (gradient descent)
     312           0 :             for (int i = 0; i < output_size; ++i) {
     313           0 :                 for (int j = 0; j < hidden_size; ++j) {
     314           0 :                     weights_hidden_output[j][i] -=
     315           0 :                         learning_rate * (hidden[i] - input[i]) * hidden[j];
     316             :                 }
     317             :             }
     318             : 
     319           0 :             for (int i = 0; i < hidden_size; ++i) {
     320           0 :                 for (int j = 0; j < input_size; ++j) {
     321           0 :                     double error = 0;
     322           0 :                     for (int k = 0; k < output_size; ++k) {
     323           0 :                         error += (hidden[k] - input[k]) *
     324           0 :                                  weights_hidden_output[i][k];
     325             :                     }
     326           0 :                     weights_input_hidden[j][i] -= learning_rate * error *
     327           0 :                                                   noisy_input[j] *
     328           0 :                                                   (1 - hidden[i]) * hidden[i];
     329             :                 }
     330             :             }
     331           0 :         }
     332             :     }
     333           0 : }
     334             : 
     335           0 : gpmp::ml::ContractiveAutoEncoder::ContractiveAutoEncoder(int in_size,
     336             :                                                          int h_size,
     337             :                                                          int out_size,
     338             :                                                          double l_rate,
     339           0 :                                                          double c_weight)
     340             :     : AutoEncoder(in_size, h_size, out_size, l_rate),
     341           0 :       contractive_weight(c_weight) {
     342           0 : }
     343             : 
     344           0 : void gpmp::ml::ContractiveAutoEncoder::train(
     345             :     const std::vector<std::vector<double>> &training_data,
     346             :     int epochs) {
     347           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     348           0 :         for (const auto &input : training_data) {
     349             :             // forward pass
     350           0 :             std::vector<double> hidden = forward(input);
     351             : 
     352             :             // backward pass (gradient descent)
     353           0 :             for (int i = 0; i < output_size; ++i) {
     354           0 :                 for (int j = 0; j < hidden_size; ++j) {
     355           0 :                     weights_hidden_output[j][i] -=
     356           0 :                         learning_rate * (hidden[i] - input[i]) * hidden[j];
     357             :                 }
     358             :             }
     359             : 
     360           0 :             for (int i = 0; i < hidden_size; ++i) {
     361           0 :                 for (int j = 0; j < input_size; ++j) {
     362           0 :                     double error = 0;
     363           0 :                     for (int k = 0; k < output_size; ++k) {
     364           0 :                         error += (hidden[k] - input[k]) *
     365           0 :                                  weights_hidden_output[i][k];
     366             :                     }
     367             :                     double contractive_term =
     368           0 :                         contractive_weight * hidden[i] * (1 - hidden[i]);
     369           0 :                     weights_input_hidden[j][i] -=
     370           0 :                         learning_rate * (error + contractive_term) * input[j] *
     371           0 :                         (1 - hidden[i]) * hidden[i];
     372             :                 }
     373             :             }
     374           0 :         }
     375             :     }
     376           0 : }
     377             : 
     378           0 : gpmp::ml::MDLAutoEncoder::MDLAutoEncoder(int in_size,
     379             :                                          int h_size,
     380             :                                          int out_size,
     381             :                                          double l_rate,
     382           0 :                                          double m_wt)
     383           0 :     : AutoEncoder(in_size, h_size, out_size, l_rate), mdl_weight(m_wt) {
     384           0 : }
     385             : 
     386           0 : void gpmp::ml::MDLAutoEncoder::train(
     387             :     const std::vector<std::vector<double>> &training_data,
     388             :     int epochs) {
     389           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     390           0 :         for (const auto &input : training_data) {
     391             :             // forward pass
     392           0 :             std::vector<double> hidden = forward(input);
     393             : 
     394             :             // backward pass (gradient descent)
     395           0 :             for (int i = 0; i < output_size; ++i) {
     396           0 :                 for (int j = 0; j < hidden_size; ++j) {
     397           0 :                     weights_hidden_output[j][i] -=
     398           0 :                         learning_rate * (hidden[i] - input[i]) * hidden[j];
     399             :                 }
     400             :             }
     401             : 
     402           0 :             for (int i = 0; i < hidden_size; ++i) {
     403           0 :                 for (int j = 0; j < input_size; ++j) {
     404           0 :                     double error = 0;
     405           0 :                     for (int k = 0; k < output_size; ++k) {
     406           0 :                         error += (hidden[k] - input[k]) *
     407           0 :                                  weights_hidden_output[i][k];
     408             :                     }
     409           0 :                     double mdl_term = mdl_weight * log(1.0 + fabs(error));
     410           0 :                     weights_input_hidden[j][i] -=
     411           0 :                         learning_rate * (error + mdl_term) * input[j] *
     412           0 :                         (1 - hidden[i]) * hidden[i];
     413             :                 }
     414             :             }
     415           0 :         }
     416             :     }
     417           0 : }
     418             : 
     419           0 : gpmp::ml::ConcreteAutoEncoder::ConcreteAutoEncoder(int in_size,
     420             :                                                    int h_size,
     421             :                                                    int out_size,
     422             :                                                    double l_rate,
     423           0 :                                                    double temp)
     424           0 :     : AutoEncoder(in_size, h_size, out_size, l_rate), temperature(temp) {
     425           0 : }
     426             : 
     427           0 : void gpmp::ml::ConcreteAutoEncoder::train(
     428             :     const std::vector<std::vector<double>> &training_data,
     429             :     int epochs) {
     430           0 :     std::default_random_engine generator;
     431           0 :     std::uniform_real_distribution<double> uniform_distribution(0.0, 1.0);
     432             : 
     433           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     434           0 :         for (const auto &input : training_data) {
     435             :             // forward pass with Concrete distribution
     436           0 :             std::vector<double> hidden;
     437           0 :             for (int i = 0; i < hidden_size; ++i) {
     438           0 :                 double u = uniform_distribution(generator);
     439             :                 // Gumbel noise
     440           0 :                 double g = -log(-log(u));
     441           0 :                 double s = (input[i] + g) / temperature;
     442           0 :                 double p = 1.0 / (1.0 + exp(-s));
     443           0 :                 hidden.push_back(p);
     444             :             }
     445             : 
     446             :             // backward pass (gradient descent)
     447           0 :             for (int i = 0; i < output_size; ++i) {
     448           0 :                 for (int j = 0; j < hidden_size; ++j) {
     449           0 :                     weights_hidden_output[j][i] -=
     450           0 :                         learning_rate * (hidden[i] - input[i]) * hidden[j];
     451             :                 }
     452             :             }
     453             : 
     454           0 :             for (int i = 0; i < hidden_size; ++i) {
     455           0 :                 for (int j = 0; j < input_size; ++j) {
     456           0 :                     double error = 0;
     457           0 :                     for (int k = 0; k < output_size; ++k) {
     458           0 :                         error += (hidden[k] - input[k]) *
     459           0 :                                  weights_hidden_output[i][k];
     460             :                     }
     461           0 :                     weights_input_hidden[j][i] -= learning_rate * error *
     462           0 :                                                   input[j] * (1 - hidden[i]) *
     463           0 :                                                   hidden[i];
     464             :                 }
     465             :             }
     466           0 :         }
     467             :     }
     468           0 : }
     469             : 
     470           0 : gpmp::ml::VariationalAutoEncoder::VariationalAutoEncoder(int in_size,
     471             :                                                          int h_size,
     472             :                                                          int out_size,
     473           0 :                                                          double l_rate)
     474           0 :     : AutoEncoder(in_size, h_size, out_size, l_rate) {
     475           0 : }
     476             : 
     477           0 : double gpmp::ml::VariationalAutoEncoder::sample_dist() {
     478           0 :     static std::default_random_engine generator;
     479           0 :     static std::normal_distribution<double> distribution(0.0, 1.0);
     480           0 :     return distribution(generator);
     481             : }
     482             : 
     483           0 : double gpmp::ml::VariationalAutoEncoder::reparameterize(double mean,
     484             :                                                         double log_variance) {
     485           0 :     double standard_normal_sample = sample_dist();
     486           0 :     return mean + exp(0.5 * log_variance) * standard_normal_sample;
     487             : }
     488             : 
     489             : std::vector<double>
     490           0 : gpmp::ml::VariationalAutoEncoder::encoder(const std::vector<double> &input) {
     491           0 :     std::vector<double> hidden(hidden_size);
     492             : 
     493           0 :     for (int i = 0; i < hidden_size; ++i) {
     494           0 :         hidden[i] = 0;
     495           0 :         for (int j = 0; j < input_size; ++j) {
     496           0 :             hidden[i] += input[j] * weights_input_hidden[j][i];
     497             :         }
     498           0 :         hidden[i] = sigmoid({hidden[i]})[0];
     499             :     }
     500             : 
     501           0 :     return hidden;
     502           0 : }
     503             : 
     504           0 : std::vector<double> gpmp::ml::VariationalAutoEncoder::decoder(
     505             :     const std::vector<double> &hidden_sampled) {
     506           0 :     std::vector<double> output(output_size);
     507             : 
     508           0 :     for (int i = 0; i < output_size; ++i) {
     509           0 :         output[i] = 0;
     510           0 :         for (int j = 0; j < hidden_size; ++j) {
     511           0 :             output[i] += hidden_sampled[j] * weights_hidden_output[j][i];
     512             :         }
     513           0 :         output[i] = sigmoid({output[i]})[0];
     514             :     }
     515             : 
     516           0 :     return output;
     517           0 : }
     518             : 
     519           0 : void gpmp::ml::VariationalAutoEncoder::gradient_descent(
     520             :     const std::vector<double> &input,
     521             :     const std::vector<double> &output,
     522             :     const std::vector<double> &hidden_sampled) {
     523           0 :     for (int i = 0; i < output_size; ++i) {
     524           0 :         for (int j = 0; j < hidden_size; ++j) {
     525           0 :             weights_hidden_output[j][i] -=
     526           0 :                 learning_rate * (output[i] - input[i]) * hidden_sampled[j];
     527             :         }
     528             :     }
     529             : 
     530           0 :     for (int i = 0; i < hidden_size; ++i) {
     531           0 :         for (int j = 0; j < input_size; ++j) {
     532           0 :             double error = 0;
     533           0 :             for (int k = 0; k < output_size; ++k) {
     534           0 :                 error += (output[k] - input[k]) * weights_hidden_output[i][k];
     535             :             }
     536             :             double hidden_gradient =
     537           0 :                 hidden_sampled[i] * (1 - hidden_sampled[i]);
     538             :             // derivative of softplus
     539             :             double log_variance_gradient =
     540           0 :                 1.0 / (1.0 + exp(-hidden_log_variance[i]));
     541           0 :             weights_input_hidden[j][i] -=
     542           0 :                 learning_rate *
     543           0 :                 (error * hidden_gradient +
     544           0 :                  (hidden_sampled[i] - hidden_mean[i]) * hidden_gradient +
     545           0 :                  (hidden_log_variance[i] - log_variance_gradient) *
     546           0 :                      hidden_gradient) *
     547           0 :                 input[j];
     548             :         }
     549             :     }
     550           0 : }
     551             : 
     552           0 : void gpmp::ml::VariationalAutoEncoder::train(
     553             :     const std::vector<std::vector<double>> &training_data,
     554             :     int epochs) {
     555           0 :     std::default_random_engine generator;
     556           0 :     std::normal_distribution<double> normal_distribution(0.0, 1.0);
     557           0 :     std::vector<double> hidden_sampled;
     558             : 
     559           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     560           0 :         for (const auto &input : training_data) {
     561             :             // forward pass (encoder)
     562           0 :             hidden_mean = encoder(input);
     563           0 :             hidden_log_variance = encoder(input);
     564             : 
     565           0 :             for (int i = 0; i < hidden_size; ++i) {
     566           0 :                 hidden_sampled.push_back(
     567           0 :                     reparameterize(hidden_mean[i], hidden_log_variance[i]));
     568             :             }
     569             : 
     570             :             // forward pass (decoder)
     571           0 :             std::vector<double> output = decoder(hidden_sampled);
     572             : 
     573             :             // backward pass (gradient descent)
     574           0 :             gradient_descent(input, output, hidden_sampled);
     575           0 :         }
     576             :     }
     577           0 : }
     578             : 
     579           0 : gpmp::ml::RecurrentAutoEncoder::RecurrentAutoEncoder(int in_size,
     580             :                                                      int h_size,
     581             :                                                      int out_size,
     582           0 :                                                      double l_rate)
     583             :     : AutoEncoder(in_size, h_size, out_size, l_rate),
     584           0 :       weights_recurrent(h_size, std::vector<double>(h_size, 0.0)) {
     585           0 : }
     586             : 
     587           0 : void gpmp::ml::RecurrentAutoEncoder::train(
     588             :     const std::vector<std::vector<double>> &training_data,
     589             :     int epochs) {
     590           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     591           0 :         std::vector<double> previous_hidden(hidden_size, 0.0);
     592             : 
     593           0 :         for (const auto &input : training_data) {
     594             :             // forward pass
     595           0 :             std::vector<double> hidden = recurr_fwd(input, previous_hidden);
     596           0 :             std::vector<double> output = forward(hidden);
     597             : 
     598             :             // backward pass (gradient descent)
     599           0 :             for (int i = 0; i < output_size; ++i) {
     600           0 :                 for (int j = 0; j < hidden_size; ++j) {
     601           0 :                     weights_hidden_output[j][i] -=
     602           0 :                         learning_rate * (output[i] - input[i]) * hidden[j];
     603             :                 }
     604             :             }
     605             : 
     606           0 :             for (int i = 0; i < hidden_size; ++i) {
     607           0 :                 for (int j = 0; j < input_size; ++j) {
     608           0 :                     double error = 0;
     609           0 :                     for (int k = 0; k < output_size; ++k) {
     610           0 :                         error += (output[k] - input[k]) *
     611           0 :                                  weights_hidden_output[i][k];
     612             :                     }
     613           0 :                     weights_input_hidden[j][i] -= learning_rate * error *
     614           0 :                                                   input[j] * (1 - hidden[i]) *
     615           0 :                                                   hidden[i];
     616             :                 }
     617             :             }
     618             : 
     619             :             // recurrent weights update
     620           0 :             for (int i = 0; i < hidden_size; ++i) {
     621           0 :                 for (int j = 0; j < hidden_size; ++j) {
     622           0 :                     weights_recurrent[j][i] -=
     623           0 :                         learning_rate * (hidden[i] - previous_hidden[i]) *
     624           0 :                         hidden[j];
     625             :                 }
     626             :             }
     627             : 
     628           0 :             previous_hidden = hidden;
     629           0 :         }
     630           0 :     }
     631           0 : }
     632             : 
     633           0 : std::vector<double> gpmp::ml::RecurrentAutoEncoder::recurr_fwd(
     634             :     const std::vector<double> &input,
     635             :     const std::vector<double> &previous_hidden) {
     636           0 :     std::vector<double> recurrent_input(hidden_size, 0.0);
     637             : 
     638             :     // sum the weighted contributions from the current input and the previous
     639             :     // hidden state
     640           0 :     for (int i = 0; i < hidden_size; ++i) {
     641           0 :         recurrent_input[i] = 0.0;
     642           0 :         for (int j = 0; j < input_size; ++j) {
     643           0 :             recurrent_input[i] += weights_input_hidden[j][i] * input[j];
     644             :         }
     645           0 :         for (int j = 0; j < hidden_size; ++j) {
     646           0 :             recurrent_input[i] += weights_recurrent[j][i] * previous_hidden[j];
     647             :         }
     648             :         // activation function
     649             :         // recurrent_input[i] = 1.0 / (1.0 + std::exp(-recurrent_input[i]));
     650           0 :         recurrent_input[i] = sigmoid({recurrent_input[i]})[0];
     651             :     }
     652             : 
     653           0 :     return recurrent_input;
     654           0 : }
     655             : 
     656           0 : gpmp::ml::FullAutoEncoder::FullAutoEncoder(int in_size,
     657             :                                            int h_size,
     658             :                                            int out_size,
     659           0 :                                            double l_rate)
     660           0 :     : AutoEncoder(in_size, h_size, out_size, l_rate) {
     661           0 : }
     662             : 
     663           0 : void gpmp::ml::FullAutoEncoder::train(
     664             :     const std::vector<std::vector<double>> &training_data,
     665             :     int epochs) {
     666           0 :     for (int epoch = 0; epoch < epochs; ++epoch) {
     667           0 :         for (const auto &input : training_data) {
     668             :             // forward pass
     669           0 :             std::vector<double> hidden = forward(input);
     670           0 :             std::vector<double> output = forward(hidden);
     671             : 
     672             :             // backward pass (gradient descent)
     673           0 :             for (int i = 0; i < output_size; ++i) {
     674           0 :                 for (int j = 0; j < hidden_size; ++j) {
     675           0 :                     weights_hidden_output[j][i] -=
     676           0 :                         learning_rate * (output[i] - input[i]) * hidden[j];
     677             :                 }
     678             :             }
     679             : 
     680           0 :             for (int i = 0; i < hidden_size; ++i) {
     681           0 :                 for (int j = 0; j < input_size; ++j) {
     682           0 :                     double error = 0;
     683           0 :                     for (int k = 0; k < output_size; ++k) {
     684           0 :                         error += (output[k] - input[k]) *
     685           0 :                                  weights_hidden_output[i][k];
     686             :                     }
     687           0 :                     weights_input_hidden[j][i] -= learning_rate * error *
     688           0 :                                                   input[j] * (1 - hidden[i]) *
     689           0 :                                                   hidden[i];
     690             :                 }
     691             :             }
     692           0 :         }
     693             :     }
     694           0 : }

Generated by: LCOV version 1.14