/*************************************************************************
*
* Project
* _____ _____ __ __ _____
* / ____| __ \| \/ | __ \
* ___ _ __ ___ _ __ | | __| |__) | \ / | |__) |
* / _ \| '_ \ / _ \ '_ \| | |_ | ___/| |\/| | ___/
*| (_) | |_) | __/ | | | |__| | | | | | | |
* \___/| .__/ \___|_| |_|\_____|_| |_| |_|_|
* | |
* |_|
*
* Copyright (C) Akiel Aries, <akiel@akiel.org>, et al.
*
* This software is licensed as described in the file LICENSE, which
* you should have received as part of this distribution. The terms
* among other details are referenced in the official documentation
* seen here : https://akielaries.github.io/openGPMP/ along with
* important files seen in this project.
*
* You may opt to use, copy, modify, merge, publish, distribute
* and/or sell copies of the Software, and permit persons to whom
* the Software is furnished to do so, under the terms of the
* LICENSE file. As this is an Open Source effort, all implementations
* must be of the same methodology.
*
*
*
* This software is distributed on an AS IS basis, WITHOUT
* WARRANTY OF ANY KIND, either express or implied.
*
************************************************************************/
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <openGPMP/linalg/mtx.hpp>
#include <vector>
#if defined(__x86_64__) || defined(__amd64__) || defined(__amd64)
/************************************************************************
*
* Matrix Operations for SSE ISA
*
************************************************************************/
#elif defined(__SSE2__)
// SSE2
#include <emmintrin.h>
#include <smmintrin.h>
/************************************************************************
*
* Matrix Operations on Arrays
*
************************************************************************/
// matrix addition for 8-bit integers using SSE and 128-bit SIMD registers
void gpmp::linalg::Mtx::mtx_add(const int8_t *A,
const int8_t *B,
int8_t *C,
int rows,
int cols) {
for (int i = 0; i < rows; ++i) {
int j = 0;
for (; j < cols - 15; j += 16) {
__m128i a = _mm_loadu_si128(
reinterpret_cast<const __m128i *>(&A[i * cols + j]));
__m128i b = _mm_loadu_si128(
reinterpret_cast<const __m128i *>(&B[i * cols + j]));
__m128i c = _mm_loadu_si128(
reinterpret_cast<const __m128i *>(&C[i * cols + j]));
// Perform vectorized addition and accumulate the result
c = _mm_add_epi8(c, _mm_add_epi8(a, b));
// Store the result back to the C matrix
_mm_storeu_si128(reinterpret_cast<__m128i *>(&C[i * cols + j]), c);
}
for (; j < cols; ++j) {
C[i * cols + j] = A[i * cols + j] + B[i * cols + j];
}
}
}
#endif
#endif<--- #endif without #if