1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*************************************************************************
 *
 *  Project
 *                         _____ _____  __  __ _____
 *                        / ____|  __ \|  \/  |  __ \
 *  ___  _ __   ___ _ __ | |  __| |__) | \  / | |__) |
 * / _ \| '_ \ / _ \ '_ \| | |_ |  ___/| |\/| |  ___/
 *| (_) | |_) |  __/ | | | |__| | |    | |  | | |
 * \___/| .__/ \___|_| |_|\_____|_|    |_|  |_|_|
 *      | |
 *      |_|
 *
 * Copyright (C) Akiel Aries, <akiel@akiel.org>, et al.
 *
 * This software is licensed as described in the file LICENSE, which
 * you should have received as part of this distribution. The terms
 * among other details are referenced in the official documentation
 * seen here : https://akielaries.github.io/openGPMP/ along with
 * important files seen in this project.
 *
 * You may opt to use, copy, modify, merge, publish, distribute
 * and/or sell copies of the Software, and permit persons to whom
 * the Software is furnished to do so, under the terms of the
 * LICENSE file. As this is an Open Source effort, all implementations
 * must be of the same methodology.
 *
 *
 *
 * This software is distributed on an AS IS basis, WITHOUT
 * WARRANTY OF ANY KIND, either express or implied.
 *
 ************************************************************************/
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <openGPMP/linalg/mtx.hpp>
#include <vector>

#if defined(__x86_64__) || defined(__amd64__) || defined(__amd64)

/************************************************************************
 *
 * Matrix Operations for SSE ISA
 *
 ************************************************************************/
#elif defined(__SSE2__)
// SSE2
#include <emmintrin.h>
#include <smmintrin.h>

/************************************************************************
 *
 * Matrix Operations on vector<vector>
 *
 ************************************************************************/

void gpmp::linalg::Mtx::mtx_add(const std::vector<std::vector<double>> &A,
                                const std::vector<std::vector<double>> &B,
                                std::vector<std::vector<double>> &C) {
    const int rows = A.size();
    const int cols = A[0].size();

    for (int i = 0; i < rows; ++i) {
        int j = 0;
        // requires at least size 2x2 matrices for SSE2
        for (; j < cols - 1; j += 2) {
            // load 2 elements from A, B, and C matrices using SSE2
            __m128d a = _mm_loadu_pd(&A[i][j]);
            __m128d b = _mm_loadu_pd(&B[i][j]);
            __m128d c = _mm_loadu_pd(&C[i][j]);

            // perform vectorized addition
            c = _mm_add_pd(a, b);

            // store the result back to the C matrix
            _mm_storeu_pd(&C[i][j], c);
        }

        // handle the remaining elements that are not multiples of 2
        for (; j < cols; ++j) {
            C[i][j] = A[i][j] + B[i][j];
        }
    }
}

// matrix subtraction using Intel intrinsics, accepts double types
void gpmp::linalg::Mtx::mtx_sub(const std::vector<std::vector<double>> &A,
                                const std::vector<std::vector<double>> &B,
                                std::vector<std::vector<double>> &C) {
    const int rows = A.size();
    const int cols = A[0].size();

    for (int i = 0; i < rows; ++i) {
        int j = 0;
        // requires at least size 2x2 matrices for SSE2
        for (; j < cols - 1; j += 2) {
            // load 2 elements from A, B, and C matrices using SSE2
            __m128d a = _mm_loadu_pd(&A[i][j]);
            __m128d b = _mm_loadu_pd(&B[i][j]);
            __m128d c = _mm_loadu_pd(&C[i][j]);

            // perform vectorized subtraction
            c = _mm_sub_pd(a, b);

            // store the result back to the C matrix
            _mm_storeu_pd(&C[i][j], c);
        }

        // handle the remaining elements that are not multiples of 2
        for (; j < cols; ++j) {
            C[i][j] = A[i][j] - B[i][j];
        }
    }
}

// matrix multiplication using Intel intrinsics, accepts double types
void gpmp::linalg::Mtx::mtx_mult(const std::vector<std::vector<double>> &A,
                                 const std::vector<std::vector<double>> &B,
                                 std::vector<std::vector<double>> &C) {
    const int rows_a = A.size();
    const int cols_a = A[0].size();
    const int cols_b = B[0].size();

    for (int i = 0; i < rows_a; ++i) {
        for (int j = 0; j < cols_b; j += 2) {
            // initialize a vector of zeros for the result
            __m128d c = _mm_setzero_pd();

            for (int k = 0; k < cols_a; ++k) {
                // load 2 elements from matrices A and B using SSE2
                __m128d a = _mm_set1_pd(A[i][k]);
                __m128d b = _mm_loadu_pd(&B[k][j]);

                // perform vectorized multiplication
                __m128d prod = _mm_mul_pd(a, b);

                // perform vectorized addition
                c = _mm_add_pd(c, prod);
            }

            // store the result back to the C matrix
            _mm_storeu_pd(&C[i][j], c);
        }

        // handle the remaining elements that are not multiples of 2
        for (int j = cols_b - cols_b % 2; j < cols_b; ++j) {
            double sum = 0.0;

            for (int k = 0; k < cols_a; ++k) {
                sum += A[i][k] * B[k][j];
            }

            C[i][j] = sum;
        }
    }
}

// transpose matrices of type double using Intel intrinsics
void gpmp::linalg::Mtx::mtx_tpose(std::vector<std::vector<double>> &matrix) {
    const int rows = matrix.size();
    const int cols = matrix[0].size();

    for (int i = 0; i < rows; i += 2) {
        for (int j = i; j < cols; j += 2) {
            __m128d row1 = _mm_loadu_pd(&matrix[i][j]);
            __m128d row2 = _mm_loadu_pd(&matrix[i + 1][j]);

            // transpose 2x2 submatrix
            __m128d tmp1 = _mm_unpacklo_pd(row1, row2);
            __m128d tmp2 = _mm_unpackhi_pd(row1, row2);

            // store the transposed 2x2 submatrix back to the matrix
            _mm_storeu_pd(&matrix[i][j], tmp1);
            _mm_storeu_pd(&matrix[i + 1][j], tmp2);
        }
    }
}

#endif

#endif<--- #endif without #if