1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*************************************************************************
 *
 *  Project
 *                         _____ _____  __  __ _____
 *                        / ____|  __ \|  \/  |  __ \
 *  ___  _ __   ___ _ __ | |  __| |__) | \  / | |__) |
 * / _ \| '_ \ / _ \ '_ \| | |_ |  ___/| |\/| |  ___/
 *| (_) | |_) |  __/ | | | |__| | |    | |  | | |
 * \___/| .__/ \___|_| |_|\_____|_|    |_|  |_|_|
 *      | |
 *      |_|
 *
 * Copyright (C) Akiel Aries, <akiel@akiel.org>, et al.
 *
 * This software is licensed as described in the file LICENSE, which
 * you should have received as part of this distribution. The terms
 * among other details are referenced in the official documentation
 * seen here : https://akielaries.github.io/openGPMP/ along with
 * important files seen in this project.
 *
 * You may opt to use, copy, modify, merge, publish, distribute
 * and/or sell copies of the Software, and permit persons to whom
 * the Software is furnished to do so, under the terms of the
 * LICENSE file. As this is an Open Source effort, all implementations
 * must be of the same methodology.
 *
 *
 *
 * This software is distributed on an AS IS basis, WITHOUT
 * WARRANTY OF ANY KIND, either express or implied.
 *
 ************************************************************************/
#include <algorithm>
#include <cmath>
#include <limits>
#include <numeric>
#include <openGPMP/stats/cdfs.hpp>
#include <random>
#include <stdexcept>
#include <vector>

// Bernoulli CDF
double gpmp::stats::CDF::bernoulli(double x, double p) {
    if (x < 0)
        return 0.0;
    else if (x < 1)
        return 1 - (1 - p);
    else
        return 1.0;
}

// Beta CDF using the incomplete beta function
double gpmp::stats::CDF::beta(double x, double alpha, double beta) {
    if (x <= 0)<--- Assuming that condition 'x<=0' is not redundant
        return 0.0;
    else if (x >= 1)<--- Condition 'x>=1' is always true
        return 1.0;
    else
        return incomplete_beta(alpha, beta, x);
}

// Binomial CDF
double gpmp::stats::CDF::binomial(int k, int n, double p) {
    if (k < 0)
        return 0.0;
    else if (k >= n)
        return 1.0;
    else
        return incomplete_beta(1.0 - p, n - k, k + 1);
}

// Cauchy CDF
double gpmp::stats::CDF::cauchy(double x, double x0, double gamma) {
    return 0.5 + atan((x - x0) / gamma) / M_PI;
}

// Chi-squared CDF
double gpmp::stats::CDF::chi_squared(double x, double k) {
    if (x < 0)
        return 0.0;
    else
        return incomplete_gamma(k / 2.0, x / 2.0);
}

// Exponential CDF
double gpmp::stats::CDF::exponential(double x, double lambda) {
    if (x < 0)
        return 0.0;
    else
        return 1.0 - exp(-lambda * x);
}

// F CDF
double gpmp::stats::CDF::f(double x, double df1, double df2) {
    if (x <= 0)
        return 0.0;
    else
        return incomplete_beta(df1 / 2.0, df2 / 2.0, df1 / (df1 + df2 * x));
}

// Gamma CDF
double gpmp::stats::CDF::gamma(double x, double shape, double scale) {
    if (x < 0)
        return 0.0;
    else
        return incomplete_gamma(shape, x / scale);
}

// Inverse-Gamma CDF
double gpmp::stats::CDF::inverse_gamma(double x, double shape, double scale) {
    if (x <= 0)
        return 0.0;
    else
        return 1.0 - incomplete_gamma(shape, scale / x);
}

// Inverse-Gaussian CDF
double gpmp::stats::CDF::inverse_gaussian(double x, double mu, double lambda) {
    if (x <= 0)
        return 0.0;
    else
        return normal_cdf(sqrt(lambda / x) * (x / mu - 1.0));
}

// Laplace CDF
double gpmp::stats::CDF::laplace(double x, double mu, double b) {
    if (x < mu)
        return 0.5 * exp((x - mu) / b);
    else
        return 1.0 - 0.5 * exp(-(x - mu) / b);
}

// Logistic CDF
double gpmp::stats::CDF::logistic(double x, double mu, double s) {
    return 1.0 / (1.0 + exp(-(x - mu) / s));
}

// Log-Normal CDF
double gpmp::stats::CDF::log_normal(double x, double mu, double sigma) {
    if (x <= 0)
        return 0.0;
    else
        return 0.5 + 0.5 * erf((log(x) - mu) / (sqrt(2.0) * sigma));
}

// Normal (Gaussian) CDF
double gpmp::stats::CDF::gaussian(double x, double mu, double sigma) {
    return 0.5 * (1 + erf((x - mu) / (sigma * sqrt(2))));
}

// Poisson CDF
double gpmp::stats::CDF::poisson(int k, double lambda) {
    if (k < 0)
        return 0.0;
    else
        return incomplete_gamma(k + 1, lambda);
}

// Rademacher CDF
double gpmp::stats::CDF::rademacher(double x) {
    if (x < 0)
        return 0.0;
    else if (x < 0.5)
        return 0.0;
    else
        return 1.0;
}

// Student's t CDF
double gpmp::stats::CDF::student_t(double x, double df) {
    if (df <= 0)
        return NAN;
    return 0.5 + 0.5 * std::tgamma((df + 1) / 2) * std::hypot(1, x / sqrt(df)) /
                     (sqrt(df) * std::tgamma(df / 2));
}

// Uniform CDF
double gpmp::stats::CDF::uniform(double x, double a, double b) {
    if (x < a)
        return 0.0;
    else if (x < b)
        return (x - a) / (b - a);
    else
        return 1.0;
}

// Weibull CDF
double gpmp::stats::CDF::weibull(double x, double shape, double scale) {
    if (x < 0)
        return 0.0;
    else
        return 1.0 - exp(-pow(x / scale, shape));
}

// Normal cumulative distribution function
double gpmp::stats::CDF::normal_cdf(double x) {
    return 0.5 * (1 + erf(x / sqrt(2.0)));
}

// Incomplete beta function for beta and binomial CDF
double gpmp::stats::CDF::incomplete_beta(double a, double b, double x) {
    const int maxIterations = 1000;
    const double epsilon = 1e-12;
    double result = 0.0;
    double term = 1.0;
    for (int k = 0; k < maxIterations; ++k) {
        term *=
            (k == 0 ? 1.0
                    : (a + k - 1) * (b - k) / (a + b + k - 1) * x / (k + 1));
        result += term;
        if (std::abs(term) < epsilon * std::abs(result))
            break;
    }
    return result * std::pow(x, a) * std::pow(1 - x, b) / (a * std::beta(a, b));
}

// Incomplete gamma function for chi-squared and gamma CDFs
double gpmp::stats::CDF::incomplete_gamma(double a, double x) {
    const int maxIterations = 1000;
    const double epsilon = 1e-12;
    double result = 0.0;
    double term = 1.0;
    for (int k = 0; k < maxIterations; ++k) {
        term *= x / (a + k);
        result += term;
        if (std::abs(term) < epsilon * std::abs(result))
            break;
    }
    return exp(-x) * std::pow(x, a) * result / std::tgamma(a);
}