1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*************************************************************************
 *
 *  Project
 *                         _____ _____  __  __ _____
 *                        / ____|  __ \|  \/  |  __ \
 *  ___  _ __   ___ _ __ | |  __| |__) | \  / | |__) |
 * / _ \| '_ \ / _ \ '_ \| | |_ |  ___/| |\/| |  ___/
 *| (_) | |_) |  __/ | | | |__| | |    | |  | | |
 * \___/| .__/ \___|_| |_|\_____|_|    |_|  |_|_|
 *      | |
 *      |_|
 *
 * Copyright (C) Akiel Aries, <akiel@akiel.org>, et al.
 *
 * This software is licensed as described in the file LICENSE, which
 * you should have received as part of this distribution. The terms
 * among other details are referenced in the official documentation
 * seen here : https://akielaries.github.io/openGPMP/ along with
 * important files seen in this project.
 *
 * You may opt to use, copy, modify, merge, publish, distribute
 * and/or sell copies of the Software, and permit persons to whom
 * the Software is furnished to do so, under the terms of the
 * LICENSE file. As this is an Open Source effort, all implementations
 * must be of the same methodology.
 *
 *
 *
 * This software is distributed on an AS IS basis, WITHOUT
 * WARRANTY OF ANY KIND, either express or implied.
 *
 ************************************************************************/
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <openGPMP/linalg/mtx.hpp>
#include <vector>

#if defined(__x86_64__) || defined(__amd64__) || defined(__amd64)

/************************************************************************
 *
 * Matrix Operations for AVX ISA
 *
 ************************************************************************/
#if defined(__AVX2__)

// AVX family intrinsics
#include <immintrin.h>

/************************************************************************
 *
 * Matrix Operations on Arrays
 *
 ************************************************************************/
// matrix addition using Intel intrinsics, accepts double arrays as matrices
void gpmp::linalg::Mtx::mtx_add(const double *A,
                                const double *B,
                                double *C,
                                int rows,
                                int cols) {
    if (rows > 8) {
        for (int i = 0; i < rows; ++i) {
            int j = 0;
            // requires at least size 4x4 size matrices
            for (; j < cols - 3; j += 4) {
                // load 4 elements from A, B, and C matrices using SIMD
                __m256d a = _mm256_loadu_pd(&A[i * cols + j]);
                __m256d b = _mm256_loadu_pd(&B[i * cols + j]);
                __m256d c = _mm256_loadu_pd(&C[i * cols + j]);<--- c is initialized
                // perform vectorized addition and accumulate the result
                c = _mm256_add_pd(a, b);<--- c is overwritten

                // store the result back to the C matrix
                _mm256_storeu_pd(&C[i * cols + j], c);
            }

            // handle the remaining elements that are not multiples of 8
            for (; j < cols; ++j) {
                C[i * cols + j] = A[i * cols + j] + B[i * cols + j];
            }
        }
    } else {
        // use standard matrix addition
        std_mtx_add(A, B, C, rows, cols);
    }
}

void gpmp::linalg::Mtx::mtx_mult(const double *A,
                                 const double *B,
                                 double *C,
                                 int rows_a,
                                 int cols_a,
                                 int cols_b) {
    if (cols_a != rows_a) {
        // Matrix dimensions don't match for multiplication
        std::cerr << "Matching error";
        return;
    }

    if (rows_a > 8) {

        for (int i = 0; i < rows_a; ++i) {
            for (int j = 0; j < cols_b - 3; j += 4) {
                // creat result vector of zeros
                __m256d sum_vec = _mm256_setzero_pd();

                for (int k = 0; k < cols_a; ++k) {
                    __m256d a_vec = _mm256_set1_pd(A[i * cols_a + k]);

                    __m256d b_vec = _mm256_loadu_pd(&B[k * cols_b + j]);

                    __m256d prod = _mm256_mul_pd(a_vec, b_vec);

                    sum_vec = _mm256_add_pd(sum_vec, prod);
                }
                _mm256_storeu_pd(&C[i * cols_b + j], sum_vec);
            }

            // handle remaining elements not multiples of 4
            for (int j = cols_b - cols_b % 4; j < cols_b; ++j) {
                double sum = 0.0;

                for (int k = 0; k < cols_a; ++k) {
                    sum += A[i * cols_a + k] * B[k * cols_b + j];
                }
                C[i * cols_b + j] = sum;
            }
        }

    }

    else {
        std_mtx_mult(A, B, C, rows_a, cols_a, cols_b);
    }
}

#endif

// x86
#endif