openGPMP
Open Source Mathematics Package
Public Member Functions | Public Attributes | List of all members
gpmp::ml::ContractiveAutoEncoder Class Reference

ContractiveAutoEncoder class, a derived class from AutoEncoder. More...

#include <encoder.hpp>

Inheritance diagram for gpmp::ml::ContractiveAutoEncoder:
gpmp::ml::AutoEncoder

Public Member Functions

 ContractiveAutoEncoder (int input_size, int hidden_size, int output_size, double learning_rate, double contractive_weight)
 Constructor for the ContractiveAutoEncoder class. More...
 
virtual void train (const std::vector< std::vector< double >> &training_data, int epochs) override
 Trains the contractive autoencoder on the given training data. More...
 
- Public Member Functions inherited from gpmp::ml::AutoEncoder
 AutoEncoder (int input_size, int hidden_size, int output_size, double learning_rate)
 Constructor for the AutoEncoder class. More...
 
std::vector< double > sigmoid (const std::vector< double > &x)
 Sigmoid activation function. More...
 
std::vector< double > forward (const std::vector< double > &input)
 Forward pass through the autoencoder. More...
 
void lrate_set (double initial_rate)
 Set the initial learning rate. More...
 
virtual void lrate_update (int epoch)
 Update the learning rate based on a schedule. More...
 
void display ()
 Print the weights of the autoencoder. More...
 
virtual void save (const std::string &filename) const
 Save the model weights to a file. More...
 
virtual void load (const std::string &filename)
 Load model weights from a file. More...
 

Public Attributes

double contractive_weight
 Weight for the contractive penalty term. More...
 
- Public Attributes inherited from gpmp::ml::AutoEncoder
int input_size
 Size of the input layer. More...
 
int hidden_size
 Size of the hidden layer. More...
 
int output_size
 Size of the output layer. More...
 
double learning_rate
 Learning rate for training the autoencoder. More...
 
std::vector< std::vector< double > > weights_input_hidden
 Weights from the input layer to the hidden layer. More...
 
std::vector< std::vector< double > > weights_hidden_output
 Weights from the hidden layer to the output layer. More...
 

Detailed Description

ContractiveAutoEncoder class, a derived class from AutoEncoder.

Definition at line 276 of file encoder.hpp.

Constructor & Destructor Documentation

◆ ContractiveAutoEncoder()

gpmp::ml::ContractiveAutoEncoder::ContractiveAutoEncoder ( int  input_size,
int  hidden_size,
int  output_size,
double  learning_rate,
double  contractive_weight 
)

Constructor for the ContractiveAutoEncoder class.

Parameters
input_sizeThe size of the input layer
hidden_sizeThe size of the hidden layer
output_sizeThe size of the output layer
learning_rateThe learning rate for training
contractive_weightThe weight for the contractive penalty term

Definition at line 335 of file encoder.cpp.

340  : AutoEncoder(in_size, h_size, out_size, l_rate),
341  contractive_weight(c_weight) {
342 }
AutoEncoder(int input_size, int hidden_size, int output_size, double learning_rate)
Constructor for the AutoEncoder class.
Definition: encoder.cpp:92
double contractive_weight
Weight for the contractive penalty term.
Definition: encoder.hpp:281

Member Function Documentation

◆ train()

void gpmp::ml::ContractiveAutoEncoder::train ( const std::vector< std::vector< double >> &  training_data,
int  epochs 
)
overridevirtual

Trains the contractive autoencoder on the given training data.

Overrides the train method in the base class with contractive penalty

Parameters
training_dataThe training data
epochsThe number of training epochs

Reimplemented from gpmp::ml::AutoEncoder.

Definition at line 344 of file encoder.cpp.

346  {
347  for (int epoch = 0; epoch < epochs; ++epoch) {
348  for (const auto &input : training_data) {
349  // forward pass
350  std::vector<double> hidden = forward(input);
351 
352  // backward pass (gradient descent)
353  for (int i = 0; i < output_size; ++i) {
354  for (int j = 0; j < hidden_size; ++j) {
355  weights_hidden_output[j][i] -=
356  learning_rate * (hidden[i] - input[i]) * hidden[j];
357  }
358  }
359 
360  for (int i = 0; i < hidden_size; ++i) {
361  for (int j = 0; j < input_size; ++j) {
362  double error = 0;
363  for (int k = 0; k < output_size; ++k) {
364  error += (hidden[k] - input[k]) *
365  weights_hidden_output[i][k];
366  }
367  double contractive_term =
368  contractive_weight * hidden[i] * (1 - hidden[i]);
369  weights_input_hidden[j][i] -=
370  learning_rate * (error + contractive_term) * input[j] *
371  (1 - hidden[i]) * hidden[i];
372  }
373  }
374  }
375  }
376 }
std::vector< std::vector< double > > weights_input_hidden
Weights from the input layer to the hidden layer.
Definition: encoder.hpp:97
std::vector< std::vector< double > > weights_hidden_output
Weights from the hidden layer to the output layer.
Definition: encoder.hpp:105
int hidden_size
Size of the hidden layer.
Definition: encoder.hpp:74
int output_size
Size of the output layer.
Definition: encoder.hpp:82
std::vector< double > forward(const std::vector< double > &input)
Forward pass through the autoencoder.
Definition: encoder.cpp:126
double learning_rate
Learning rate for training the autoencoder.
Definition: encoder.hpp:89
int input_size
Size of the input layer.
Definition: encoder.hpp:66

Referenced by main().

Member Data Documentation

◆ contractive_weight

double gpmp::ml::ContractiveAutoEncoder::contractive_weight

Weight for the contractive penalty term.

Definition at line 281 of file encoder.hpp.


The documentation for this class was generated from the following files: