openGPMP
Open Source Mathematics Package
Public Member Functions | List of all members
gpmp::ml::FullAutoEncoder Class Reference

FullAutoEncoder class, a derived class from AutoEncoder. More...

#include <encoder.hpp>

Inheritance diagram for gpmp::ml::FullAutoEncoder:
gpmp::ml::AutoEncoder

Public Member Functions

 FullAutoEncoder (int input_size, int hidden_size, int output_size, double learning_rate)
 Constructor for the FullAutoEncoder class. More...
 
virtual void train (const std::vector< std::vector< double >> &training_data, int epochs) override
 Trains the fully connected autoencoder on the given training data. More...
 
- Public Member Functions inherited from gpmp::ml::AutoEncoder
 AutoEncoder (int input_size, int hidden_size, int output_size, double learning_rate)
 Constructor for the AutoEncoder class. More...
 
std::vector< double > sigmoid (const std::vector< double > &x)
 Sigmoid activation function. More...
 
std::vector< double > forward (const std::vector< double > &input)
 Forward pass through the autoencoder. More...
 
void lrate_set (double initial_rate)
 Set the initial learning rate. More...
 
virtual void lrate_update (int epoch)
 Update the learning rate based on a schedule. More...
 
void display ()
 Print the weights of the autoencoder. More...
 
virtual void save (const std::string &filename) const
 Save the model weights to a file. More...
 
virtual void load (const std::string &filename)
 Load model weights from a file. More...
 

Additional Inherited Members

- Public Attributes inherited from gpmp::ml::AutoEncoder
int input_size
 Size of the input layer. More...
 
int hidden_size
 Size of the hidden layer. More...
 
int output_size
 Size of the output layer. More...
 
double learning_rate
 Learning rate for training the autoencoder. More...
 
std::vector< std::vector< double > > weights_input_hidden
 Weights from the input layer to the hidden layer. More...
 
std::vector< std::vector< double > > weights_hidden_output
 Weights from the hidden layer to the output layer. More...
 

Detailed Description

FullAutoEncoder class, a derived class from AutoEncoder.

Definition at line 522 of file encoder.hpp.

Constructor & Destructor Documentation

◆ FullAutoEncoder()

gpmp::ml::FullAutoEncoder::FullAutoEncoder ( int  input_size,
int  hidden_size,
int  output_size,
double  learning_rate 
)

Constructor for the FullAutoEncoder class.

Parameters
input_sizeThe size of the input layer.
hidden_sizeThe size of the hidden layer.
output_sizeThe size of the output layer.
learning_rateThe learning rate for training.

Definition at line 656 of file encoder.cpp.

660  : AutoEncoder(in_size, h_size, out_size, l_rate) {
661 }
AutoEncoder(int input_size, int hidden_size, int output_size, double learning_rate)
Constructor for the AutoEncoder class.
Definition: encoder.cpp:92

Member Function Documentation

◆ train()

void gpmp::ml::FullAutoEncoder::train ( const std::vector< std::vector< double >> &  training_data,
int  epochs 
)
overridevirtual

Trains the fully connected autoencoder on the given training data.

Overrides the train method in the base class for a fully connected architecture.

Parameters
training_dataThe training data.
epochsThe number of training epochs.

Reimplemented from gpmp::ml::AutoEncoder.

Definition at line 663 of file encoder.cpp.

665  {
666  for (int epoch = 0; epoch < epochs; ++epoch) {
667  for (const auto &input : training_data) {
668  // forward pass
669  std::vector<double> hidden = forward(input);
670  std::vector<double> output = forward(hidden);
671 
672  // backward pass (gradient descent)
673  for (int i = 0; i < output_size; ++i) {
674  for (int j = 0; j < hidden_size; ++j) {
675  weights_hidden_output[j][i] -=
676  learning_rate * (output[i] - input[i]) * hidden[j];
677  }
678  }
679 
680  for (int i = 0; i < hidden_size; ++i) {
681  for (int j = 0; j < input_size; ++j) {
682  double error = 0;
683  for (int k = 0; k < output_size; ++k) {
684  error += (output[k] - input[k]) *
685  weights_hidden_output[i][k];
686  }
687  weights_input_hidden[j][i] -= learning_rate * error *
688  input[j] * (1 - hidden[i]) *
689  hidden[i];
690  }
691  }
692  }
693  }
694 }
std::vector< std::vector< double > > weights_input_hidden
Weights from the input layer to the hidden layer.
Definition: encoder.hpp:97
std::vector< std::vector< double > > weights_hidden_output
Weights from the hidden layer to the output layer.
Definition: encoder.hpp:105
int hidden_size
Size of the hidden layer.
Definition: encoder.hpp:74
int output_size
Size of the output layer.
Definition: encoder.hpp:82
std::vector< double > forward(const std::vector< double > &input)
Forward pass through the autoencoder.
Definition: encoder.cpp:126
double learning_rate
Learning rate for training the autoencoder.
Definition: encoder.hpp:89
int input_size
Size of the input layer.
Definition: encoder.hpp:66

The documentation for this class was generated from the following files: