|
def | __add__ (self, other) |
|
def | __mul__ (self, other) |
|
def | add_term (self, coefficient, exponent) |
|
def | display (self) |
|
def | power_rule (self) |
|
def | product_rule (self, other) |
|
def | quotient_rule (self, other) |
|
def | chain_rule (self, inner) |
|
def | nth_derivative (self, n) |
|
def | eval (self, x) |
|
def | limit_at (self, x) |
|
def | limit_at_infinity (self) |
|
def | __init__ (self) |
|
|
| thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") |
|
| terms = property(_calculus.Differential_terms_get, _calculus.Differential_terms_set) |
|
Definition at line 133 of file calculus.py.
◆ __init__()
def pygpmp.calculus.calculus.Differential.__init__ |
( |
|
self | ) |
|
Definition at line 174 of file calculus.py.
175 _calculus.Differential_swiginit(self, _calculus.new_Differential())
◆ __add__()
def pygpmp.calculus.calculus.Differential.__add__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Definition at line 138 of file calculus.py.
138 def __add__(self, other):
139 return _calculus.Differential___add__(self, other)
◆ __mul__()
def pygpmp.calculus.calculus.Differential.__mul__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Definition at line 141 of file calculus.py.
141 def __mul__(self, other):
142 return _calculus.Differential___mul__(self, other)
◆ add_term()
def pygpmp.calculus.calculus.Differential.add_term |
( |
|
self, |
|
|
|
coefficient, |
|
|
|
exponent |
|
) |
| |
Definition at line 144 of file calculus.py.
144 def add_term(self, coefficient, exponent):
145 return _calculus.Differential_add_term(self, coefficient, exponent)
◆ chain_rule()
def pygpmp.calculus.calculus.Differential.chain_rule |
( |
|
self, |
|
|
|
inner |
|
) |
| |
Definition at line 159 of file calculus.py.
159 def chain_rule(self, inner):
160 return _calculus.Differential_chain_rule(self, inner)
◆ display()
def pygpmp.calculus.calculus.Differential.display |
( |
|
self | ) |
|
Definition at line 147 of file calculus.py.
148 return _calculus.Differential_display(self)
◆ eval()
def pygpmp.calculus.calculus.Differential.eval |
( |
|
self, |
|
|
|
x |
|
) |
| |
Definition at line 165 of file calculus.py.
166 return _calculus.Differential_eval(self, x)
◆ limit_at()
def pygpmp.calculus.calculus.Differential.limit_at |
( |
|
self, |
|
|
|
x |
|
) |
| |
Definition at line 168 of file calculus.py.
168 def limit_at(self, x):
169 return _calculus.Differential_limit_at(self, x)
◆ limit_at_infinity()
def pygpmp.calculus.calculus.Differential.limit_at_infinity |
( |
|
self | ) |
|
Definition at line 171 of file calculus.py.
171 def limit_at_infinity(self):
172 return _calculus.Differential_limit_at_infinity(self)
◆ nth_derivative()
def pygpmp.calculus.calculus.Differential.nth_derivative |
( |
|
self, |
|
|
|
n |
|
) |
| |
Definition at line 162 of file calculus.py.
162 def nth_derivative(self, n):
163 return _calculus.Differential_nth_derivative(self, n)
◆ power_rule()
def pygpmp.calculus.calculus.Differential.power_rule |
( |
|
self | ) |
|
Definition at line 150 of file calculus.py.
150 def power_rule(self):
151 return _calculus.Differential_power_rule(self)
◆ product_rule()
def pygpmp.calculus.calculus.Differential.product_rule |
( |
|
self, |
|
|
|
other |
|
) |
| |
Definition at line 153 of file calculus.py.
153 def product_rule(self, other):
154 return _calculus.Differential_product_rule(self, other)
◆ quotient_rule()
def pygpmp.calculus.calculus.Differential.quotient_rule |
( |
|
self, |
|
|
|
other |
|
) |
| |
Definition at line 156 of file calculus.py.
156 def quotient_rule(self, other):
157 return _calculus.Differential_quotient_rule(self, other)
◆ __repr__
pygpmp.calculus.calculus.Differential.__repr__ = _swig_repr |
|
staticprivate |
◆ __swig_destroy__
pygpmp.calculus.calculus.Differential.__swig_destroy__ = _calculus.delete_Differential |
|
staticprivate |
◆ terms
pygpmp.calculus.calculus.Differential.terms = property(_calculus.Differential_terms_get, _calculus.Differential_terms_set) |
|
static |
◆ thisown
pygpmp.calculus.calculus.Differential.thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") |
|
static |
The documentation for this class was generated from the following file: