|
def | is_prime (self, n) |
|
def | compute_miller_rabin (self, d, n) |
|
def | miller_rabin_prime (self, n, iters) |
|
def | miller_rabin (self, iters, min_val, max_val) |
|
def | witness (self, n, d, a, s) |
|
def | AKS (self, n) |
|
def | jacobian_number (self, a, n) |
|
def | solovoy_strassen (self, p, iters) |
|
def | mod_mul (self, a, b, m) |
|
def | mod_pow (self, a, b, m) |
|
def | carmichael_num (self, n) |
|
def | ETF (self, n) |
|
def | __init__ (self) |
|
|
| thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") |
|
Definition at line 137 of file nt.py.
◆ __init__()
def pygpmp.nt.nt.PrimalityTest.__init__ |
( |
|
self | ) |
|
Definition at line 177 of file nt.py.
178 _nt.PrimalityTest_swiginit(self, _nt.new_PrimalityTest())
◆ AKS()
def pygpmp.nt.nt.PrimalityTest.AKS |
( |
|
self, |
|
|
|
n |
|
) |
| |
Definition at line 156 of file nt.py.
157 return _nt.PrimalityTest_AKS(self, n)
◆ carmichael_num()
def pygpmp.nt.nt.PrimalityTest.carmichael_num |
( |
|
self, |
|
|
|
n |
|
) |
| |
Definition at line 171 of file nt.py.
171 def carmichael_num(self, n):
172 return _nt.PrimalityTest_carmichael_num(self, n)
◆ compute_miller_rabin()
def pygpmp.nt.nt.PrimalityTest.compute_miller_rabin |
( |
|
self, |
|
|
|
d, |
|
|
|
n |
|
) |
| |
Definition at line 144 of file nt.py.
144 def compute_miller_rabin(self, d, n):
145 return _nt.PrimalityTest_compute_miller_rabin(self, d, n)
◆ ETF()
def pygpmp.nt.nt.PrimalityTest.ETF |
( |
|
self, |
|
|
|
n |
|
) |
| |
Definition at line 174 of file nt.py.
175 return _nt.PrimalityTest_ETF(self, n)
◆ is_prime()
def pygpmp.nt.nt.PrimalityTest.is_prime |
( |
|
self, |
|
|
|
n |
|
) |
| |
Definition at line 141 of file nt.py.
141 def is_prime(self, n):
142 return _nt.PrimalityTest_is_prime(self, n)
◆ jacobian_number()
def pygpmp.nt.nt.PrimalityTest.jacobian_number |
( |
|
self, |
|
|
|
a, |
|
|
|
n |
|
) |
| |
Definition at line 159 of file nt.py.
159 def jacobian_number(self, a, n):
160 return _nt.PrimalityTest_jacobian_number(self, a, n)
◆ miller_rabin()
def pygpmp.nt.nt.PrimalityTest.miller_rabin |
( |
|
self, |
|
|
|
iters, |
|
|
|
min_val, |
|
|
|
max_val |
|
) |
| |
Definition at line 150 of file nt.py.
150 def miller_rabin(self, iters, min_val, max_val):
151 return _nt.PrimalityTest_miller_rabin(self, iters, min_val, max_val)
◆ miller_rabin_prime()
def pygpmp.nt.nt.PrimalityTest.miller_rabin_prime |
( |
|
self, |
|
|
|
n, |
|
|
|
iters |
|
) |
| |
Definition at line 147 of file nt.py.
147 def miller_rabin_prime(self, n, iters):
148 return _nt.PrimalityTest_miller_rabin_prime(self, n, iters)
◆ mod_mul()
def pygpmp.nt.nt.PrimalityTest.mod_mul |
( |
|
self, |
|
|
|
a, |
|
|
|
b, |
|
|
|
m |
|
) |
| |
Definition at line 165 of file nt.py.
165 def mod_mul(self, a, b, m):
166 return _nt.PrimalityTest_mod_mul(self, a, b, m)
◆ mod_pow()
def pygpmp.nt.nt.PrimalityTest.mod_pow |
( |
|
self, |
|
|
|
a, |
|
|
|
b, |
|
|
|
m |
|
) |
| |
Definition at line 168 of file nt.py.
168 def mod_pow(self, a, b, m):
169 return _nt.PrimalityTest_mod_pow(self, a, b, m)
◆ solovoy_strassen()
def pygpmp.nt.nt.PrimalityTest.solovoy_strassen |
( |
|
self, |
|
|
|
p, |
|
|
|
iters |
|
) |
| |
Definition at line 162 of file nt.py.
162 def solovoy_strassen(self, p, iters):
163 return _nt.PrimalityTest_solovoy_strassen(self, p, iters)
◆ witness()
def pygpmp.nt.nt.PrimalityTest.witness |
( |
|
self, |
|
|
|
n, |
|
|
|
d, |
|
|
|
a, |
|
|
|
s |
|
) |
| |
Definition at line 153 of file nt.py.
153 def witness(self, n, d, a, s):
154 return _nt.PrimalityTest_witness(self, n, d, a, s)
◆ __repr__
pygpmp.nt.nt.PrimalityTest.__repr__ = _swig_repr |
|
staticprivate |
◆ __swig_destroy__
pygpmp.nt.nt.PrimalityTest.__swig_destroy__ = _nt.delete_PrimalityTest |
|
staticprivate |
◆ thisown
pygpmp.nt.nt.PrimalityTest.thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") |
|
static |
The documentation for this class was generated from the following file: