Here is a list of all data types members with links to the data types they belong to:
- r -
- r
: gpmp::nt::RC5
, RC6
- R2()
: gpmp::ml::Stats
- r_sqrd()
: gpmp::ml::LinearRegression
, pygpmp.ml.ml.LinearRegression
- rademacher()
: gpmp::stats::CDF
, gpmp::stats::PDF
- radius
: Ball
, gpmp::Graph
- rand()
: gpmp::linalg::mtx< T >
- rand_init()
: gpmp::ml::PrimaryMLP
- rand_int()
: gpmp::ml::PrimaryMLP
- rand_real()
: gpmp::ml::PrimaryMLP
- randn()
: gpmp::linalg::mtx< T >
- random_search()
: gpmp::optim::Func
- random_state
: gpmp::ml::SVC
- range()
: gpmp::ml::Stats
, gpmp::stats::Describe
- rank_data()
: gpmp::stats::Describe
- rayleigh_iter()
: gpmp::linalg::Eigen
- RC5()
: gpmp::nt::RC5
- RC6()
: RC6
- recurr_fwd()
: gpmp::ml::RecurrentAutoEncoder
- RecurrentAutoEncoder()
: gpmp::ml::RecurrentAutoEncoder
- reflect()
: gpmp::optim::Func
- regula_falsi()
: gpmp::optim::Func
- relu()
: gpmp::ml::Activation
- relu_derivative()
: gpmp::ml::Activation
- reparameterize()
: gpmp::ml::VariationalAutoEncoder
- result_type
: gpmp::core::rndm::LCG
- return_coeffecient()
: gpmp::ml::LinearRegression
, pygpmp.ml.ml.LinearRegression
- return_constant()
: gpmp::ml::LinearRegression
, pygpmp.ml.ml.LinearRegression
- rightSingularVectors_
: gpmp::linalg::SVD
- RMS()
: gpmp::ml::Stats
- rng
: BNN
- rotl()
: gpmp::nt::RC5
, gpmp::nt::RedPike
, RC6
- rotr()
: gpmp::nt::RC5
, gpmp::nt::RedPike
, RC6
- ROUNDS
: gpmp::nt::RedPike
- rows
: gpmp::linalg::Matrix< Type >
- rows_
: gpmp::core::DataTable
- run()
: gpmp::ml::PrimaryMLP
- runs_test()
: gpmp::stats::HypothesisTest