|
def | __init__ (self) |
|
def | calculate_coeffecient (self) |
|
def | calculate_constant (self) |
|
def | data_size (self) |
|
def | return_coeffecient (self) |
|
def | return_constant (self) |
|
def | best_fit (self) |
|
def | get_input (self, *args) |
|
def | split_data (self, test_size, seed, shuffle) |
|
def | show_data (self) |
|
def | predict (self, *args) |
|
def | error_in (self, *args) |
|
def | error_square (self) |
|
def | mse (self, x_data, y_data) |
|
def | r_sqrd (self, x_data, y_data) |
|
def | num_rows (self, input) |
|
|
| thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") |
|
| x = property(_ml.LinearRegression_x_get, _ml.LinearRegression_x_set) |
|
| y = property(_ml.LinearRegression_y_get, _ml.LinearRegression_y_set) |
|
| coeff = property(_ml.LinearRegression_coeff_get, _ml.LinearRegression_coeff_set) |
|
| constant = property(_ml.LinearRegression_constant_get, _ml.LinearRegression_constant_set) |
|
| sum_xy = property(_ml.LinearRegression_sum_xy_get, _ml.LinearRegression_sum_xy_set) |
|
| sum_x = property(_ml.LinearRegression_sum_x_get, _ml.LinearRegression_sum_x_set) |
|
| sum_y = property(_ml.LinearRegression_sum_y_get, _ml.LinearRegression_sum_y_set) |
|
| sum_x_square = property(_ml.LinearRegression_sum_x_square_get, _ml.LinearRegression_sum_x_square_set) |
|
| sum_y_square = property(_ml.LinearRegression_sum_y_square_get, _ml.LinearRegression_sum_y_square_set) |
|
| x_train = property(_ml.LinearRegression_x_train_get, _ml.LinearRegression_x_train_set) |
|
| y_train = property(_ml.LinearRegression_y_train_get, _ml.LinearRegression_y_train_set) |
|
| x_test = property(_ml.LinearRegression_x_test_get, _ml.LinearRegression_x_test_set) |
|
| y_test = property(_ml.LinearRegression_y_test_get, _ml.LinearRegression_y_test_set) |
|
Definition at line 121 of file ml.py.
◆ __init__()
def pygpmp.ml.ml.LinearRegression.__init__ |
( |
|
self | ) |
|
Definition at line 138 of file ml.py.
139 _ml.LinearRegression_swiginit(self, _ml.new_LinearRegression())
◆ best_fit()
def pygpmp.ml.ml.LinearRegression.best_fit |
( |
|
self | ) |
|
Definition at line 156 of file ml.py.
157 return _ml.LinearRegression_best_fit(self)
◆ calculate_coeffecient()
def pygpmp.ml.ml.LinearRegression.calculate_coeffecient |
( |
|
self | ) |
|
Definition at line 141 of file ml.py.
141 def calculate_coeffecient(self):
142 return _ml.LinearRegression_calculate_coeffecient(self)
◆ calculate_constant()
def pygpmp.ml.ml.LinearRegression.calculate_constant |
( |
|
self | ) |
|
Definition at line 144 of file ml.py.
144 def calculate_constant(self):
145 return _ml.LinearRegression_calculate_constant(self)
◆ data_size()
def pygpmp.ml.ml.LinearRegression.data_size |
( |
|
self | ) |
|
Definition at line 147 of file ml.py.
148 return _ml.LinearRegression_data_size(self)
◆ error_in()
def pygpmp.ml.ml.LinearRegression.error_in |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Definition at line 171 of file ml.py.
171 def error_in(self, *args):
172 return _ml.LinearRegression_error_in(self, *args)
◆ error_square()
def pygpmp.ml.ml.LinearRegression.error_square |
( |
|
self | ) |
|
Definition at line 174 of file ml.py.
174 def error_square(self):
175 return _ml.LinearRegression_error_square(self)
◆ get_input()
def pygpmp.ml.ml.LinearRegression.get_input |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Definition at line 159 of file ml.py.
159 def get_input(self, *args):
160 return _ml.LinearRegression_get_input(self, *args)
◆ mse()
def pygpmp.ml.ml.LinearRegression.mse |
( |
|
self, |
|
|
|
x_data, |
|
|
|
y_data |
|
) |
| |
Definition at line 177 of file ml.py.
177 def mse(self, x_data, y_data):
178 return _ml.LinearRegression_mse(self, x_data, y_data)
◆ num_rows()
def pygpmp.ml.ml.LinearRegression.num_rows |
( |
|
self, |
|
|
|
input |
|
) |
| |
Definition at line 183 of file ml.py.
183 def num_rows(self, input):
184 return _ml.LinearRegression_num_rows(self, input)
◆ predict()
def pygpmp.ml.ml.LinearRegression.predict |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Definition at line 168 of file ml.py.
168 def predict(self, *args):
169 return _ml.LinearRegression_predict(self, *args)
◆ r_sqrd()
def pygpmp.ml.ml.LinearRegression.r_sqrd |
( |
|
self, |
|
|
|
x_data, |
|
|
|
y_data |
|
) |
| |
Definition at line 180 of file ml.py.
180 def r_sqrd(self, x_data, y_data):
181 return _ml.LinearRegression_r_sqrd(self, x_data, y_data)
◆ return_coeffecient()
def pygpmp.ml.ml.LinearRegression.return_coeffecient |
( |
|
self | ) |
|
Definition at line 150 of file ml.py.
150 def return_coeffecient(self):
151 return _ml.LinearRegression_return_coeffecient(self)
◆ return_constant()
def pygpmp.ml.ml.LinearRegression.return_constant |
( |
|
self | ) |
|
Definition at line 153 of file ml.py.
153 def return_constant(self):
154 return _ml.LinearRegression_return_constant(self)
◆ show_data()
def pygpmp.ml.ml.LinearRegression.show_data |
( |
|
self | ) |
|
Definition at line 165 of file ml.py.
166 return _ml.LinearRegression_show_data(self)
◆ split_data()
def pygpmp.ml.ml.LinearRegression.split_data |
( |
|
self, |
|
|
|
test_size, |
|
|
|
seed, |
|
|
|
shuffle |
|
) |
| |
Definition at line 162 of file ml.py.
162 def split_data(self, test_size, seed, shuffle):
163 return _ml.LinearRegression_split_data(self, test_size, seed, shuffle)
◆ __repr__
pygpmp.ml.ml.LinearRegression.__repr__ = _swig_repr |
|
staticprivate |
◆ __swig_destroy__
pygpmp.ml.ml.LinearRegression.__swig_destroy__ = _ml.delete_LinearRegression |
|
staticprivate |
◆ coeff
pygpmp.ml.ml.LinearRegression.coeff = property(_ml.LinearRegression_coeff_get, _ml.LinearRegression_coeff_set) |
|
static |
◆ constant
pygpmp.ml.ml.LinearRegression.constant = property(_ml.LinearRegression_constant_get, _ml.LinearRegression_constant_set) |
|
static |
◆ sum_x
pygpmp.ml.ml.LinearRegression.sum_x = property(_ml.LinearRegression_sum_x_get, _ml.LinearRegression_sum_x_set) |
|
static |
◆ sum_x_square
pygpmp.ml.ml.LinearRegression.sum_x_square = property(_ml.LinearRegression_sum_x_square_get, _ml.LinearRegression_sum_x_square_set) |
|
static |
◆ sum_xy
pygpmp.ml.ml.LinearRegression.sum_xy = property(_ml.LinearRegression_sum_xy_get, _ml.LinearRegression_sum_xy_set) |
|
static |
◆ sum_y
pygpmp.ml.ml.LinearRegression.sum_y = property(_ml.LinearRegression_sum_y_get, _ml.LinearRegression_sum_y_set) |
|
static |
◆ sum_y_square
pygpmp.ml.ml.LinearRegression.sum_y_square = property(_ml.LinearRegression_sum_y_square_get, _ml.LinearRegression_sum_y_square_set) |
|
static |
◆ thisown
pygpmp.ml.ml.LinearRegression.thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") |
|
static |
pygpmp.ml.ml.LinearRegression.x = property(_ml.LinearRegression_x_get, _ml.LinearRegression_x_set) |
|
static |
◆ x_test
pygpmp.ml.ml.LinearRegression.x_test = property(_ml.LinearRegression_x_test_get, _ml.LinearRegression_x_test_set) |
|
static |
◆ x_train
pygpmp.ml.ml.LinearRegression.x_train = property(_ml.LinearRegression_x_train_get, _ml.LinearRegression_x_train_set) |
|
static |
pygpmp.ml.ml.LinearRegression.y = property(_ml.LinearRegression_y_get, _ml.LinearRegression_y_set) |
|
static |
◆ y_test
pygpmp.ml.ml.LinearRegression.y_test = property(_ml.LinearRegression_y_test_get, _ml.LinearRegression_y_test_set) |
|
static |
◆ y_train
pygpmp.ml.ml.LinearRegression.y_train = property(_ml.LinearRegression_y_train_get, _ml.LinearRegression_y_train_set) |
|
static |
The documentation for this class was generated from the following file: