7 from sys
import version_info
as _swig_python_version_info
9 if __package__
or "." in __name__:
15 import builtins
as __builtin__
21 strthis =
"proxy of " + self.this.__repr__()
22 except __builtin__.Exception:
24 return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
27 def _swig_setattr_nondynamic_instance_variable(set):
28 def set_instance_attr(self, name, value):
30 set(self, name, value)
31 elif name ==
"thisown":
33 elif hasattr(self, name)
and isinstance(getattr(type(self), name), property):
34 set(self, name, value)
36 raise AttributeError(
"You cannot add instance attributes to %s" % self)
37 return set_instance_attr
40 def _swig_setattr_nondynamic_class_variable(set):
41 def set_class_attr(cls, name, value):
42 if hasattr(cls, name)
and not isinstance(getattr(cls, name), property):
45 raise AttributeError(
"You cannot add class attributes to %s" % cls)
49 def _swig_add_metaclass(metaclass):
50 """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
52 return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
56 class _SwigNonDynamicMeta(type):
57 """Meta class to enforce nondynamic attributes (no new attributes) for a class"""
58 __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)
61 class SwigPyIterator(object):
62 thisown = property(
lambda x: x.this.own(),
lambda x, v: x.this.own(v), doc=
"The membership flag")
64 def __init__(self, *args, **kwargs):
65 raise AttributeError(
"No constructor defined - class is abstract")
67 __swig_destroy__ = _ml.delete_SwigPyIterator
70 return _ml.SwigPyIterator_value(self)
73 return _ml.SwigPyIterator_incr(self, n)
76 return _ml.SwigPyIterator_decr(self, n)
78 def distance(self, x):
79 return _ml.SwigPyIterator_distance(self, x)
82 return _ml.SwigPyIterator_equal(self, x)
85 return _ml.SwigPyIterator_copy(self)
88 return _ml.SwigPyIterator_next(self)
91 return _ml.SwigPyIterator___next__(self)
94 return _ml.SwigPyIterator_previous(self)
97 return _ml.SwigPyIterator_advance(self, n)
100 return _ml.SwigPyIterator___eq__(self, x)
103 return _ml.SwigPyIterator___ne__(self, x)
105 def __iadd__(self, n):
106 return _ml.SwigPyIterator___iadd__(self, n)
108 def __isub__(self, n):
109 return _ml.SwigPyIterator___isub__(self, n)
111 def __add__(self, n):
112 return _ml.SwigPyIterator___add__(self, n)
114 def __sub__(self, *args):
115 return _ml.SwigPyIterator___sub__(self, *args)
120 _ml.SwigPyIterator_swigregister(SwigPyIterator)
122 thisown = property(
lambda x: x.this.own(),
lambda x, v: x.this.own(v), doc=
"The membership flag")
123 __repr__ = _swig_repr
124 x = property(_ml.LinearRegression_x_get, _ml.LinearRegression_x_set)
125 y = property(_ml.LinearRegression_y_get, _ml.LinearRegression_y_set)
126 coeff = property(_ml.LinearRegression_coeff_get, _ml.LinearRegression_coeff_set)
127 constant = property(_ml.LinearRegression_constant_get, _ml.LinearRegression_constant_set)
128 sum_xy = property(_ml.LinearRegression_sum_xy_get, _ml.LinearRegression_sum_xy_set)
129 sum_x = property(_ml.LinearRegression_sum_x_get, _ml.LinearRegression_sum_x_set)
130 sum_y = property(_ml.LinearRegression_sum_y_get, _ml.LinearRegression_sum_y_set)
131 sum_x_square = property(_ml.LinearRegression_sum_x_square_get, _ml.LinearRegression_sum_x_square_set)
132 sum_y_square = property(_ml.LinearRegression_sum_y_square_get, _ml.LinearRegression_sum_y_square_set)
133 x_train = property(_ml.LinearRegression_x_train_get, _ml.LinearRegression_x_train_set)
134 y_train = property(_ml.LinearRegression_y_train_get, _ml.LinearRegression_y_train_set)
135 x_test = property(_ml.LinearRegression_x_test_get, _ml.LinearRegression_x_test_set)
136 y_test = property(_ml.LinearRegression_y_test_get, _ml.LinearRegression_y_test_set)
139 _ml.LinearRegression_swiginit(self, _ml.new_LinearRegression())
142 return _ml.LinearRegression_calculate_coeffecient(self)
145 return _ml.LinearRegression_calculate_constant(self)
148 return _ml.LinearRegression_data_size(self)
151 return _ml.LinearRegression_return_coeffecient(self)
154 return _ml.LinearRegression_return_constant(self)
157 return _ml.LinearRegression_best_fit(self)
160 return _ml.LinearRegression_get_input(self, *args)
163 return _ml.LinearRegression_split_data(self, test_size, seed, shuffle)
166 return _ml.LinearRegression_show_data(self)
169 return _ml.LinearRegression_predict(self, *args)
172 return _ml.LinearRegression_error_in(self, *args)
175 return _ml.LinearRegression_error_square(self)
177 def mse(self, x_data, y_data):
178 return _ml.LinearRegression_mse(self, x_data, y_data)
181 return _ml.LinearRegression_r_sqrd(self, x_data, y_data)
184 return _ml.LinearRegression_num_rows(self, input)
185 __swig_destroy__ = _ml.delete_LinearRegression
188 _ml.LinearRegression_swigregister(LinearRegression)
def mse(self, x_data, y_data)
def return_constant(self)
def return_coeffecient(self)
def calculate_constant(self)
def split_data(self, test_size, seed, shuffle)
def get_input(self, *args)
def num_rows(self, input)
def error_in(self, *args)
def r_sqrd(self, x_data, y_data)
def calculate_coeffecient(self)