openGPMP
Open Source Mathematics Package
- s -
sample_dist() :
gpmp::ml::VariationalAutoEncoder
save() :
gpmp::ml::AutoEncoder
scalar_add() :
gpmp::linalg::Matrix< Type >
scalar_mult() :
gpmp::linalg::Matrix< Type >
schur_decomp() :
gpmp::linalg::Eigen
score() :
gpmp::ml::SVC
SecondaryMLP() :
gpmp::ml::SecondaryMLP< T >
secondPartialDerivativeTest() :
gpmp::NumericalAnalysis
seed() :
gpmp::core::rndm::LCG
selu() :
gpmp::ml::Activation
selu_derivative() :
gpmp::ml::Activation
sensitivity() :
gpmp::linalg::Eigen
set() :
gpmp::linalg::Tensor
set_kernel() :
gpmp::ml::SVC
set_kernel_parameters() :
gpmp::ml::SVC
set_penalty() :
gpmp::ml::SVC
set_random_state() :
gpmp::ml::SVC
set_signal_in() :
gpmp::ml::PrimaryMLP
set_verbose() :
gpmp::ml::SVC
setLogDestination() :
gpmp::core::Logger
,
pygpmp.core.core.Logger
setLogFile() :
gpmp::core::Logger
,
pygpmp.core.core.Logger
setLogLevel() :
gpmp::core::Logger
,
pygpmp.core.core.Logger
sgeaxpy() :
gpmp::linalg::SGEMM
sgemm_macro_kernel() :
gpmp::linalg::SGEMM
sgemm_micro_kernel() :
gpmp::linalg::SGEMM
sgemm_nn() :
gpmp::linalg::SGEMM
sgescal() :
gpmp::linalg::SGEMM
show_data() :
gpmp::ml::LinearRegression
,
pygpmp.ml.ml.LinearRegression
sieve_of_eratosthenes() :
gpmp::PrimalityGen
,
pygpmp.nt.nt.PrimalityGen
sigmoid() :
gpmp::ml::Activation
,
gpmp::ml::AutoEncoder
,
gpmp::ml::LogReg
,
gpmp::ml::SVC
sigmoid_activ() :
gpmp::ml::SecondaryMLP< T >
sigmoid_deriv() :
gpmp::ml::SecondaryMLP< T >
sigmoid_derivative() :
gpmp::ml::Activation
silu() :
gpmp::ml::Activation
silu_derivative() :
gpmp::ml::Activation
simulate() :
gpmp::ml::PrimaryMLP
skewness() :
gpmp::stats::Describe
smht() :
gpmp::ml::Activation
smht_derivative() :
gpmp::ml::Activation
smoothed_bootstrap() :
gpmp::stats::Resampling
softmax() :
gpmp::ml::Activation
softmax_derivative() :
gpmp::ml::Activation
softplus() :
gpmp::ml::Activation
solovoy_strassen() :
gpmp::PrimalityTest
,
pygpmp.nt.nt.PrimalityTest
solve_cholesky() :
gpmp::linalg::LinSys
solve_gauss() :
gpmp::linalg::LinSys
solve_jacobi() :
gpmp::linalg::LinSys
solve_lu() :
gpmp::linalg::LinSys
sort() :
gpmp::core::DataTable
,
pygpmp.core.core.DataTable
SparseAutoEncoder() :
gpmp::ml::SparseAutoEncoder
spearmans_rho() :
gpmp::stats::Describe
split_data() :
gpmp::ml::LinearRegression
,
pygpmp.ml.ml.LinearRegression
split_indices() :
gpmp::ml::Kfold
sqr_err() :
gpmp::linalg::Matrix< Type >
SRT() :
gpmp::EuclideanDivision
standardDeviation() :
gpmp::ml::Stats
std_mtx_add() :
gpmp::linalg::Mtx
std_mtx_mult() :
gpmp::linalg::Mtx
std_mtx_sub() :
gpmp::linalg::Mtx
std_mtx_tpose() :
gpmp::linalg::Mtx
stdev() :
gpmp::stats::Describe
stirling_num() :
gpmp::Comb
stoch_gradientdesc() :
gpmp::ml::Trainers
stolarskyMean() :
gpmp::ml::Stats
store_hash() :
gpmp::RC4
,
pygpmp.nt.nt.RC4
str_to_double() :
gpmp::core::DataTable
,
pygpmp.core.core.DataTable
str_to_int() :
gpmp::core::DataTable
,
pygpmp.core.core.DataTable
student_t() :
gpmp::stats::CDF
,
gpmp::stats::PDF
sub() :
gpmp::linalg::Matrix< Type >
subfactorial() :
gpmp::Comb
subsample() :
gpmp::stats::Resampling
subsequences() :
gpmp::Comb
sum() :
gpmp::linalg::Matrix< Type >
SVC() :
gpmp::ml::SVC
SVD() :
gpmp::linalg::SVD
Generated by
1.9.1